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Semaphores

• Semaphore = a synchronization primitive
– higher level of abstraction than locks

– invented by Dijkstra in 1968, as part of the THE operating 
system

• A semaphore is:
– a variable that is manipulated through two operations, 

P and V (Dutch for “wait” and “signal”)
• P(sem) (wait)

– block until sem > 0, then subtract 1 from sem and proceed

• V(sem) (signal)
– add 1 to sem

• Do these operations atomically
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Blocking in semaphores

• Each semaphore has an associated queue of threads
– when P (sem) is called by a thread,

• if sem was “available” (>0), decrement sem and let thread 
continue

• if sem was “unavailable” (0), place thread on associated queue; 
run some other thread

– when V (sem) is called by a thread
• if thread(s) are waiting on the associated queue, unblock one

– place it on the ready queue

– might as well let the “V-ing” thread continue execution

• otherwise (when no threads are waiting on the sem), 
increment sem

– the signal is “remembered” for next time P(sem) is called
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Two types of semaphores

• Binary semaphore (aka mutex semaphore)
– sem is initialized to 1

– guarantees mutually exclusive access to resource (e.g., a 
critical section of code)

– only one thread/process allowed entry at a time

– Logically equivalent to a lock with blocking rather than 
spinning

• Counting semaphore
– Allow up to N threads continue (we’ll see why in a bit …)

– sem is initialized to N
• N = number of units available

– represents resources with many (identical) units available

– allows threads to enter as long as more units are available
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Binary semaphore usage

• From the programmer’s perspective, P and V on a binary 
semaphore are just like Acquire and Release on a lock

P(sem)
.
.
.
do whatever stuff requires mutual exclusion; could conceivably
be a lot of code
.
.
.

V(sem)

– same lack of programming language support for correct usage

• Important differences in the underlying implementation, however
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Example: Bounded buffer problem

• AKA “producer/consumer” problem
– there is a circular buffer in memory with N entries (slots)

– producer threads insert entries into it (one at a time)

– consumer threads remove entries from it (one at a time)

• Threads are concurrent
– so, we must use synchronization constructs to control 

access to shared variables describing buffer state

headtail
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Bounded buffer using semaphores
(both binary and counting)

Note:  
I have elided all the code 
concerning which is the first 
full slot, which is the last 
full slot, etc.

var mutex: semaphore = 1 ; mutual exclusion to shared data
empty: semaphore = n    ; count of empty slots (all empty to start)
full: semaphore = 0         ; count of full slots (none full to start)

producer:
P(empty) ; block if no slots available
P(mutex) ; get access to pointers

<add item to slot, adjust pointers>
V(mutex) ; done with pointers
V(full)      ; note one more full slot

consumer:
P(full)      ; wait until there’s a full slot
P(mutex) ; get access to pointers

<remove item from slot, adjust pointers>
V(mutex) ; done with pointers
V(empty) ; note there’s an empty slot

<use the item>
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Example: Readers/Writers

• Description:
– A single object is shared among several threads/processes

– Sometimes a thread just reads the object

– Sometimes a thread updates (writes) the object

– We can allow multiple readers at a time
• why?

– We can only allow one writer at a time
• why?
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Readers/Writers using semaphores

var mutex: semaphore = 1 ; controls access to readcount
wrt: semaphore = 1 ; control entry for a writer or first reader
readcount: integer = 0 ; number of active readers

writer:
P(wrt) ; any writers or readers?

<perform write operation>
V(wrt) ; allow others

reader:
P(mutex) ; ensure exclusion

readcount++ ; one more reader
if readcount == 1 then P(wrt)      ; if we’re the first, synch with writers

V(mutex)
<perform read operation>

P(mutex) ; ensure exclusion
readcount-- ; one fewer reader
if readcount == 0 then V(wrt)       ; no more readers, allow a writer

V(mutex)
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Readers/Writers notes

• Notes:
– the first reader blocks on P(wrt) if there is a writer

• any other readers will then block on P(mutex)

– if a waiting writer exists, the last reader to exit signals the 
waiting writer

• can new readers get in while a writer is waiting?

• so?

– when writer exits, if there is both a reader and writer waiting, 
which one goes next?
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Semaphores vs. Spinlocks

• Threads that are blocked at the level of program logic (that is, by 
the semaphore P operation) are placed on queues, rather than 
busy-waiting

• Busy-waiting may be used for the “real” mutual exclusion 
required to implement P and V
– but these are very short critical sections – totally independent of 

program logic

– and they are not implemented by the application programmer
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Abstract implementation

– P/wait(sem)
• acquire “real” mutual exclusion

– if sem is “available” (>0), decrement sem; release “real” mutual 
exclusion; let thread continue

– otherwise, place thread on associated queue; release “real” 
mutual exclusion; run some other thread

– V/signal(sem)
• acquire “real” mutual exclusion

– if thread(s) are waiting on the associated queue, unblock one 
(place it on the ready queue)

– if no threads are on the queue, sem is incremented

» the signal is “remembered” for next time P(sem) is called

• release “real” mutual exclusion

• [the “V-ing” thread continues execution, or may be preempted]
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Pressing questions

• How do you acquire “real” mutual exclusion?

• Why is this any better than using a spinlock (test-and-set) or 
disabling interrupts (assuming you’re in the kernel) in lieu of a 
semaphore?

• What if someone issues an extra V?

• What if someone forgets to P before manipulating shared state?
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Quick roadmap

• The synchronization landscape using locks

• The academic “textbook” view of the world

– Spinlocks – rudimentary

– Semphores – add yielding on top of spinlocks

– Condition Variables – similar to Semaphores but without 
history

– Monitors - add programing structure to make using locks 
less error prone

• Locks that we actually used in Windows.  That’s another story
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Condition Variables

• Basic operations
– Wait()

• Wait until some thread does a signal and release the 
associated lock, as an atomic operation

– Signal()
• If any threads are waiting, wake up one
• Cannot proceed until lock re-acquired

• Signal() is not remembered
– A signal to a condition variable that has no threads waiting is 

a no-op

• Qualitative use guideline
– You wait() when you can’t proceed until some shared state 

changes
– You signal() when shared state changes from “bad” to 

“good”
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Bounded buffers with condition variables

Note 1:  
Do you see why wait() must 
release the associated 
lock?

Note 2: 
How is the associated lock 
re-acquired?

[Let’s think about the 
implementation of this 
inside the threads package]

var mutex: lock ; mutual exclusion to shared data
freeslot: condition ; there’s a free slot
fullslot: condition ; there’s a full slot

producer:
lock(mutex) ; get access to pointers
if [no slots available] wait(freeslot);

<add item to slot, adjust pointers>
signal(fullslot);
unlock(mutex)

consumer:
lock(mutex) ; get access to pointers
if [no slots have data] wait(fullslot);

<remove item from slot, adjust pointers>
signal(freeslot);
unlock(mutex); 
<use the item>
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The possible bug

• Depending on the implementation …
– Between the time a thread is woken up by signal() and the 

time it re-acquires the lock, the condition it is waiting for may 
be false again

• Waiting for a thread to put something in the buffer

• A thread does, and signals

• Now another thread comes along and consumes it

• Then the “signalled” thread forges ahead …

– Solution
• Not

– if [no slots available] wait(fullslot)

• Instead 
– While [no slots available] wait(fullslot)

– Could the scheduler also solve this problem?
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Problems with semaphores, locks, and 
condition variables

• They can be used to solve any of the traditional synchronization 
problems, but it’s easy to make mistakes
– they are essentially shared global variables

• can be accessed from anywhere (bad software engineering)

– there is no connection between the synchronization variable and 
the data being controlled by it

– No control over their use, no guarantee of proper usage
• Condition variables:  will there ever be a signal?

• Semaphores:  will there ever be a V()?

• Locks:  did you lock when necessary?  Unlock at the right time?  At all?

• Thus, they are prone to bugs
– We can reduce the chance of bugs by “stylizing” the use of 

synchronization

– Language help is useful for this
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One More Approach: Monitors
• A monitor is a programming language construct that supports 

controlled access to shared data
– synchronization code is added by the compiler

• why does this help?

• A monitor is (essentially) a class in which every method automatically 
acquires a lock on entry, and releases it on exit – it combines:
– shared data structures (object)
– procedures that operate on the shared data (object metnods)
– synchronization between concurrent threads that invoke those procedures

• Data can only be accessed from within the monitor, using the provided 
procedures
– protects the data from unstructured access
– Prevents ambiguity about what the synchronization variable protects

• Addresses the key usability issues that arise with semaphores
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A monitor

shared data

waiting queue of threads 
trying to enter the monitor

operations (methods)at most one thread 
in monitor at a 

time

Proc A

Proc B

Proc C

Don’t confuse 
this box with the 

box we have 
used to denote a 

process!
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Monitor facilities

• “Automatic” mutual exclusion
– only one thread can be executing inside at any time

• thus, synchronization is implicitly associated with the monitor – it 
“comes for free” 

– if a second thread tries to execute a monitor procedure, it blocks 
until the first has left the monitor

• more restrictive than semaphores

• but easier to use (most of the time)

• But, there’s a problem…
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Problem: Bounded Buffer Scenario

Produce()

Consume()

• Buffer is empty
• Now what?

P P C

C
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Problem: Bounded Buffer Scenario

Produce()

Consume()

• Buffer is full
• Now what?

P P C

P
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Solution?

• Monitors require condition variables
• Operations on condition variables (just as before!)

– wait(c)
• release monitor lock, so somebody else can get in
• wait for somebody else to signal condition
• thus, condition variables have associated wait queues

– signal(c)
• wake up at most one waiting thread

– “Hoare” monitor:  wakeup immediately, signaller steps outside

• if no waiting threads, signal is lost
– this is different than semaphores: no history!

– broadcast(c)
• wake up all waiting threads
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Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

produce(resource x) {
if (array “resources” is full, determined maybe by a count)

wait(not_full);
insert “x” in array “resources”
signal(not_empty);

}

consume(resource *x) {
if (array “resources” is empty, determined maybe by a count)

wait(not_empty);
*x = get resource from array “resources”
signal(not_full);

}
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Produce()

Consume()

• Buffer is full
• Now what?

P P C

P

Problem: Bounded Buffer Scenario
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Bounded Buffer Scenario with CV’s

Produce()

Consume()

• Buffer is full
• Now what?

P P C

P

Queue of 
threads 

waiting for 
condition “not 

full” to be 
signaled
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Runtime system calls for (Hoare) monitors

• EnterMonitor(m) {guarantee mutual exclusion}

• ExitMonitor(m) {hit the road, letting someone else run}

• Wait(c) {step out until condition satisfied}

• Signal(c) {if someone’s waiting, step out and let them run}

• EnterMonitor and ExitMonitor are inserted automatically by 
the compiler.  

• This guarantees mutual exclusion for code inside of the 
monitor.
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Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
if (array “resources” is full, determined maybe by a count)
wait(not_full);

insert “x” in array “resources”
signal(not_empty);

}
procedure get_entry(resource *x) {

if (array “resources” is empty, determined maybe by a count)
wait(not_empty);

*x = get resource from array “resources”
signal(not_full);

}

EnterMonitor(m)

EnterMonitor(m)

ExitMonitor(m)

ExitMonitor(m)
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• Who runs when the signal() is done and there is a thread waiting 
on the condition variable?

• Hoare monitors: signal(c) means
– run waiter immediately
– signaller blocks immediately

• condition guaranteed to hold when waiter runs
• but, signaller must restore monitor invariants before signalling!

– cannot leave a mess for the waiter, who will run immediately!

• Mesa monitors: signal(c) means
– waiter is made ready, but the signaller continues

• waiter runs when signaller leaves monitor (or waits)

– signaller need not restore invariant until it leaves the monitor
– being woken up is only a hint that something has changed

• signalled condition may no longer hold
• must recheck conditional case

There is a subtle issue with that code…
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• Hoare monitors:

• Mesa monitors:

• Mesa monitors easier to use
– more efficient

– fewer context switches

– directly supports broadcast

• Hoare monitors leave less to chance
– when wake up, condition guaranteed to be what you expect

if (notReady) wait(c)

while (notReady) wait(c)

Hoare vs. Mesa Monitors
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Runtime system calls for Hoare monitors

• EnterMonitor(m) {guarantee mutual exclusion}
– if m occupied, insert caller into queue m

– else mark as occupied, insert caller into ready queue

– choose somebody to run

• ExitMonitor(m) {hit the road, letting someone else run}
– if queue m is empty, then mark m as unoccupied

– else move a thread from queue m to the ready queue

– insert caller in ready queue

– choose someone to run
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• Wait(c) {step out until condition satisfied}
– if queue m is empty, then mark m as unoccupied

– else move a thread from queue m to the ready queue

– put the caller on queue c

– choose someone to run

• Signal(c) {if someone’s waiting, step out and let him run}
– if queue c is empty then put the caller on the ready queue

– else move a thread from queue c to the ready queue, and put the 
caller into queue m

– choose someone to run
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Runtime system calls for Mesa monitors

• EnterMonitor(m) {guarantee mutual exclusion}
– …

• ExitMonitor(m) {hit the road, letting someone else run}
– …

• Wait(c) {step out until condition satisfied}
– …

• Signal(c) {if someone’s waiting, give them a shot after I’m 
done}
– if queue c is occupied, move one thread from queue c to queue m

– return to caller
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• Broadcast(c) {food fight!}
– move all threads on queue c onto queue m

– return to caller
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Readers and Writers
(stolen from Cornell )

Monitor ReadersNWriters {
int WaitingWriters, WaitingReaders, NReaders, NWriters;
Condition CanRead, CanWrite;

Void BeginWrite()
{

if(NWriters == 1 || NReaders > 0)
{

++WaitingWriters;
wait(CanWrite);
--WaitingWriters;

}
NWriters = 1;

}
Void EndWrite()
{

NWriters = 0;
if(WaitingReaders)

Signal(CanRead);
else

Signal(CanWrite);
}

Void BeginRead()
{

if(NWriters == 1 || WaitingWriters > 0)
{

++WaitingReaders;
Wait(CanRead);

--WaitingReaders;
}
++NReaders;
Signal(CanRead);

}

Void EndRead()
{

if(--NReaders == 0)
Signal(CanWrite);

}
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Monitors and Java

• Java offers something a bit like monitors
– It should be clear that they’re not monitors in the full sense!

• Every Java object contains an intrinsic lock

• The synchronized keyword locks that lock

• Can be applied to methods, or blocks of statements
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Synchronized methods

• Atomic integer is a commonly provided (or built) package

• public class atomicInt {
    int value;
    public atomicInt(int initVal) {
        value = initVal;
    }
    public synchronized postIncrement() {
        return value++;
    }
    public synchronized postDecrement() {
        return value--;
    }
    …
  }
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Monitor Summary

• Language supports monitors
• Compiler understands them

– Compiler inserts calls to runtime routines for
• monitor entry
• monitor exit

– Programmer inserts calls to runtime routines for
• signal
• wait

– Language/object encapsulation ensures correctness
• Sometimes!  With conditions, you still need to think about 

synchronization

• Runtime system implements these routines
– moves threads on and off queues
– ensures mutual exclusion!



Basic Lock tools

• Spinlocks

• Semaphores (aka: sleep locks, mutex)
– Binary and Counting

• Condition Variables (Monitors)
– Hoare and Mesa

1/31/2025 40
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Other approaches

We can optimize locks even further when there is 
significant lock contention

• MCS Locks

• RCU Locks

We can enrich the lock semantics

• Reader/Writer (Shared/Exclusive) Locks


